RFM analysis was born out of direct mail marketing, in particular a 1995 article by Tom Wansbeek and Jan Roelf Bult titled “Optimal Selection for Direct Mail,” which was published in the journal Marketing Science. Their work helped confirm the Pareto Principle — the idea widely held among marketers that 80% of sales come from 20% of a brand’s customers.
Benefits of RFM Analysis
RFM analysis enables marketers to increase revenue by targeting specific groups of existing customers (i.e., customer segmentation) with messages and offers that are more likely to be relevant based on data about a particular set of behaviors. This leads to increased response rates, customer retention, customer satisfaction, and customer lifetime value (CLTV).
Each of these RFM metrics has been shown to be effective in predicting future customer behavior and increasing revenue. Customers who have made a purchase in the recent past are more likely to do so in the near future. Those who interact with your brand more frequently are more likely to do so again soon. And those who have spent the most are more likely to be big spenders going forward.
RFM analysis enables you to target customers with messages that best match their relationship with your brand. For example, you are likely to have more success suggesting big-ticket items to customers who spend frequently and in large amounts. On the other hand, you are more likely to grow the customer value of your relationships with consumers who make purchases frequently, but only in small amounts, by rewarding them for their loyalty or offering referral promotions.
How Does RFM Analysis Work?
Market research has traditionally concentrated on demographic and psychographic data, which marketers use to conduct customer segmentation. Those data points are then used to predict customer behavior across much larger populations that share the same set of traits. However, these methods depend on data from a small sample of consumers.
With the advent of systems like customer data platforms (CDPs) that help gather, unify and synthesize customer behaviors, marketers have much more granular data about the habits of individual customers to inform segmentation. And with AI-powered insights layered on top, these behaviors can be interpreted and acted on with far greater speed and precision.
Rather than segmenting customers only using demographic and psychographic data, marketers can create segments based on the real-world behavior of individuals, including purchase history across any channel (online or offline), browsing history, prior campaign responses and more. Unsurprisingly, this type of segmentation is called behavioral segmentation.
And even a basic CRM system can perform rudimentary tracking of the three easily quantifiable characteristics that contribute to RFM analysis: